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Abstract
Microscopic simulation models have been widely used as tools to investigate the operation of traffic systems and different
intelligent transportation systems applications. The fidelity of microscopic simulation tools depends on the driving behavior
models that they implement. However, current models commonly do not consider human-related factors, such as distraction.
The potential for distraction while driving has increased rapidly with the availability of smartphones and other connected and
infotainment devices. Thus, an understanding of the impact of distraction on driving behavior is essential to improve the rea-
lism of microscopic traffic tools and support safety and other applications that are sensitive to it. This study focuses on car-
following behavior in the context of distracting activities. The parameters of the well-known GM and intelligent driver models
are estimated under various distraction scenarios using data collected with an experiment conducted in a driving simulator.
The estimation results show that drivers are less sensitive to their leaders while talking on the phone and especially while
texting. The estimated models are implemented in a microscopic traffic simulation model. The average speed, coefficient of
variation of speed, acceleration noise and acceleration and deceleration time fractions were used as measures of perfor-
mance indicating traffic flow and safety implications. The simulation results show deterioration of traffic flow with texting and
to some extent talking on the phone: average speeds are lower and the coefficient of variation of speeds are higher. Further
experimentation with varying fractions of texting drivers showed similar trends.

There is no universally agreed definition of driver dis-
traction. The definitions in the literature vary. One is:
‘‘driver distraction occurs when a driver is delayed in the
recognition of information needed to safely accomplish
the driving task because some event, activity, object or
person within or outside the vehicle compelled or tended
to induce the driver’s shifting attention away from the
driving task’’ (1). Alternatively, driver distraction is
defined as: ‘‘a shift in attention away from stimuli critical
to safe driving toward stimuli that are not related to safe
driving’’ (2). Driver distraction, in all its forms, has been
found to affect driver performance, especially at the
operational and tactical levels (3, 4). At these levels, driv-
ers are required to make continuous and timely deci-
sions, within fractions of seconds, to safely control their
vehicles (5). Thus, secondary tasks, even for short dura-
tions, and especially those that involve visual, auditory,
biomechanical (physical) and cognitive distractions,
might lead to failures in drivers’ performance and conse-
quently to crashes (6). Visual distraction, such as reading
a text message, which causes drivers to take their eyes off
the road, was found to involve substantial increase in
crash risk since the driving environment may change rap-
idly (7). Auditory distraction occurs when drivers focus

their attention on auditory signals rather than on the
road environment, such as when listening to the radio or
music. Biomechanical or physical distraction occurs
when drivers remove one or both hands from the steering
wheel for extended periods of time to physically manipu-
late an object. Cognitive distraction occurs when drivers
look at the road but fail to see, that is, they do not per-
ceive what they see (8, 9). This happens because second-
ary tasks compete over the limited central processing
resources in the brain. Carsten and Brookhuis (10) found
that when drivers are cognitively distracted, their car-
following behavior is impaired, while their lane-keeping
performance improved. The latter is a result of a ‘‘tunnel
vision’’ effect in which drivers focus their attention on
the center of the road. In a driving simulator study,
Muhrer and Vollrath (11) found that cognitive distrac-
tion negatively influences the anticipation of the beha-
vior of other drivers, while visual distraction deteriorates
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the perception and reaction to unexpected events. They
found that the minimum time to collision was smaller
with visual distraction than with cognitive distraction.

Car-following behavior is one of the main building
blocks of microscopic simulation models. It is defined as
when the subject vehicle follows the vehicle in front of it
(the leader) and reacts to its actions. Gazis et al. (12)
developed the GM model which considers a non-linearity
in the effect of the spacing and the subject vehicle speed
on the sensitivity of the response to the stimuli, which is
the speed difference with respect to the leader. Over the
years, many studies followed this line of research, trying
to improve the model in different ways, such as suggest-
ing various stimuli and objectives for the driver (e.g.,
keeping desired spacing or headways, desired speeds, lim-
its on maximum accelerations), differentiating para-
meters for acceleration and deceleration decisions, and so
on. For thorough reviews see Brackstone and McDonald
(13), Toledo (14), Hamdar (15), and Treiber and Kesting
(16), among others. Despite the wide range of proposed
models, they mostly represent an idealized environment,
which does not account for human factors and errors.
Saifuzzaman and Zheng (17) term these ‘‘engineering
models’’ and argue that they lack in their inability to cap-
ture human factors.

Few studies have dealt with the development of driver
models that explicitly incorporate human factors, and
specifically distraction. Relevant theoretical behavioral
frameworks were proposed by Fuller (18, 19), Hamdar
(15), and Schomig and Metz (20). Even fewer studies
have attempted to translate these theories into car-
following specifications. Yang and Peng (21) and
Przybyla et al. (22) assume that distracted followers
maintain their previous speeds rather than react to their
leaders. Distraction episodes and their durations are ran-
domly drawn from their assumed distributions. Yang
and Peng (21) also introduce perception errors and time
delays in their model, which extends a variant of the GM
car-following model. Przybyle et al. (22) use Newell’s
model for car following. Their analysis is focused on
crash rates, and so they do not evaluate microscopic level
accelerations. Hoogendoorn et al. (23) incorporate the
task capability interface (TCI) model within the intelli-
gent driver model (IDM) car-following model. TCI
assumes that driving performance is negatively affected
when the task demand is higher than the driver capabil-
ity. The latter is affected by distraction. In the modified
IDM, free flow speeds, desired spacings and maximum
accelerations are all affected by the difference between
task demand and driver capability. The authors demon-
strate the sensitivity of traffic flow to varying TCI mea-
sures, but do not discuss how these may be estimated
from data. Van Lint et al. (24) use a similar model within
the OpenTrafficSimulation model. They use an assumed

distribution for distraction values, which varies both
within and between drivers. The distraction value affects
desired speeds and reaction times. They also do not show
how the parameters of this model may be estimated.
Saifuzzaman et al. (25) apply modifications to the GM
and IDM to capture the TCI. In their model task, diffi-
culty is captured by the ratio between task demand and
driver capability. Its expression depends on the vehicle’s
speed, pacing, desired headway and a risk factor. It
affects the maximum acceleration and deceleration in the
GM and the desired spacing in the IDM. They estimate
the modified model using driving simulator data that
was collected with and without distraction. Van Lint and
Calvert (26) present a comprehensive framework, also
based on TCI, to incorporate human factors, including
distraction, into driving models. In their model, task
saturation, which is influenced by distraction, affects var-
ious errors that the driver may make. They demonstrate
how this framework is incorporated with a version of the
IDM and propose functional forms for the various com-
ponents of the model. They demonstrate their model
with an application to distracted driving and show that it
produces conceptually plausible results. However, they
do not discuss methods and data needs for model
estimation.

The approaches described above that explicitly
incorporate human factors within driving behavior are
conceptually desirable and useful, certainly in the con-
text of driving performance. However, they also have
limitations: methods and data to test their functional
form and estimate their parameters may be difficult to
collect; in application, they may be computationally
expensive and require inputs (e.g., on distributions of
human traits, frequencies and durations of various
types of distractions) that are not readily available.
This study focuses on engineering-level car-following
behavior in the context of distracting activities. The
parameters of the well-known GM and IDM are esti-
mated under various distraction scenarios using data
collected in a driving simulator. The best fit estimated
models are implemented in a microscopic traffic simu-
lation model. The simulation model is then used in a
case study of an urban arterial in Haifa, Israel. The
impact of the distracting activities on traffic flow are
evaluated using performance measures that are derived
from the simulation results.

The rest of this paper is organized as follows: the next
section describes the simulator experiment and presents
summary statistics for the collected data. Next, the method
to estimate the parameters of the car-following models
under the various distraction conditions and the estimation
results are presented. This is followed by the implementa-
tion of the best estimated car-following models within
the microscopic traffic Simulation TRANSMODELER
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and results of a case study to evaluate the effects on traffic
flow. Finally, the results are discussed in a conclusion
section.

Driving Simulator Experiment

A laboratory experiment using a driving simulator was
developed to collect data on driving behavior while
undertaking different distracting activities. The simula-
tion scenarios included a two-lane rural highway. Lane
and shoulder widths were 3.75m and 1.5m, respectively.
The sections were designed on a level terrain and with no
intersections. The scenarios were designed with daytime
and good weather conditions which allowed good visibi-
lity. Drivers were instructed to drive as they would nor-
mally in the real world. They were told not to pass the
vehicle in front. This was also indicated by the markings
on the road. Following previous studies (27, 28) drivers
were given between 5 and 10min training to become
familiar with the simulator.

A scenario took about 4min to complete. Each sce-
nario was composed of six sections with different speeds
for the vehicle in front of the subject. The leader speed in
each section was constant, and different from that of the
preceding and following sections. The speed transition
from one section to the next was determined by a con-
stant acceleration (or deceleration) rate, which was ran-
domly selected in the range 0.4 to 2.5m/s2. Four levels of
speed ranges were used: 20–40, 40–60, 60–80, and 80–
100km/h. The realized lead speed was drawn from a uni-
form distribution over the speed range within the specific
level. The duration of constant speed sections was 40 s
when the speed was in the range of 20 to 80km/h, and
30 s when the speed was over 80 km/h. Figure 1 shows an
example of the leader vehicle speed profile from one of
the scenarios in the experiment.

Vehicles in the opposing direction traveled at a con-
stant speed of 70 km/h. In the event that the driver is
involved in a crash, for example a rear-end crash with
the lead vehicle, the driver hears a sound of crashing, the
windshield breaks, and the subject vehicle comes to a full
stop. Then, the lead vehicle disappears and the scenario
continues from the same point the crash occurs, with a
new lead vehicle.

Twenty-four different scenarios were generated.
Drivers drove four different scenarios each. In each one
of the scenarios, the drivers were engaged in one of four
distraction conditions. In all cases the activities took
place throughout the driving scenario:

1. Making a cell phone call (hand-held): drivers
received a phone call at the beginning of the sce-
nario and were engaged in a conversation with

the experimenter, in which they were asked sev-
eral general questions.

2. Sending and receiving text messages: drivers
received messages with general questions to their
own cell phones and were requested to reply to
those messages.

3. Eating a snack: the participating drivers were
requested to eat a snack, such as potato chips,
while driving.

4. No distracting activities (control case): the driver
did not have any secondary tasks beside the pri-
mary task of driving.

The order of the activities within the experiment was ran-
domly chosen.

The simulator used in this experiment, STISIM (29),
is a fixed-base interactive driving simulator, which has a
60� horizontal and 40� vertical display. The changing
alignment and driving scene were projected onto a screen
in front of the driver. The simulator updates the images
at a rate of 30 frames per second.

Participants were recruited using billboard advertise-
ments at the Technion campus. Participation was volun-
tary, with screening criteria that the participant holds a
driving license and drives on a regular basis. Participants
were compensated with a voucher for a coffee shop at a
value of about 6 USD. In total, 101 participants (68
males, 33 females) completed the simulator experiment.
Their ages ranged from 18 to 57 years (mean=27.8;
standard deviation=8.3 years). On average the drivers
had a driving license for 4 years.

The collected data include observations of the detailed
trajectories of individual vehicles in various situations.
These include speed and acceleration of the subject vehi-
cle and the leader with resolution of 0.5 s. Only the data
of the acceleration and deceleration sections were used to
estimate the car-following models. This was done to
avoid overfitting of the acceleration functions in the con-
stant speed sections, where control errors the accelera-
tions, which both theoretically and in the data tend to
zero. The estimation dataset included a total of 5,610,
4,113, 4,327, and 5,301 observations for the control, text-
ing, eating, and calling scenarios, respectively. Table 1
presents summary statistics for the data with the control
and various distraction conditions.

Car-Following Models

GM Model

The GM model is based on the sensitivity-stimulus
framework, which assumes that the driver reacts to sti-
muli from the environment. In the GM model, the sti-
mulus is the leader relative speed (the speed of the
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leader less the speed of the subject vehicle). The sensi-
tivity depends on the vehicle’s speed and the distance
between the two vehicles. The original formulation
accounts for reaction time, but not for broader hetero-
geneity in behavior among drivers. The formulation
below accounts for serial correlation because of driver-
specific terms. Including reaction time in the specifica-
tion, in addition to driver-specific heterogeneity, may
lead to identification issues. Furthermore, microscopic
traffic simulation models generally do not explicitly
model reaction time. Therefore, it is omitted in the

following functional form. However, a nonlinear sti-
mulus is used:

E antð Þ=a
Vnt

b

DXnt
g DVnt

l ð1Þ

where E antð Þ is the expected value of the acceleration
applied by driver n at time t. Vnt is the speed of the subject
vehicle. DXnt is the spacing between the subject vehicle
and its leader. DVnt =Vn�1, t � Vnt is the leader relative
speed. a, b, g and l are parameters.

Figure 1. An example of the speed profile of the lead vehicle.

Table 1. Summary Statistics of the Data for Model Estimation

Statistic Condition Speed (m/s) Acceleration (m/s2) Relative speed (m/s) Spacing (m) Headway (s)

Mean Control 13.43 0.10 0.61 35.93 2.80
Texting 12.75 0.09 0.63 39.35 3.19
Eating 13.06 0.12 0.50 35.59 2.86
Calling 12.89 0.16 0.55 32.42 2.61

Median Control 12.45 0.07 0.34 30.47 2.47
Texting 12.01 0.06 0.57 33.60 2.78
Eating 12.46 0.11 0.30 30.63 2.43
Calling 12.08 0.15 0.34 26.65 2.31

Standard deviation Control 5.01 0.76 2.90 20.46 1.46
Texting 4.37 0.79 3.63 22.29 1.72
Eating 4.43 0.76 2.99 19.61 1.53
Calling 4.87 0.85 2.96 19.87 1.42

Minimum Control 3.02 22.98 215.01 7.70 0.52
Texting 2.54 23.00 215.01 0.26 0.02
Eating 1.75 23.00 215.81 7.61 0.61
Calling 2.79 23.00 215.41 0.49 0.04

Maximum Control 24.96 3.17 21.01 99.89 9.88
Texting 25.00 3.20 17.14 100.00 9.93
Eating 25.00 3.19 17.89 99.57 9.95
Calling 25.00 3.19 20.83 99.87 9.95
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The applied acceleration includes the expected value
and error terms. It is assumed that the error term is com-
prised of two components: The first is a driver-specific
term that does not vary over time. It captures heterogene-
ity in the behavior, including indirectly in reaction times.
The second is a generic random term:

ant =E antð Þ+mn + ent ð2Þ

where mn is the driver-specific error term. ent is a random
term. It is assumed that the two error terms are indepen-
dent of each other, and that both follow normal distribu-
tions: mn;N 0,sm

� �
and ent;N 0,seð Þ.

Finally, it is hypothesized that the response to the sti-
muli is positive (acceleration) for positive leader relative
speeds, that is, when the leader is faster than the subject
vehicle and negative (deceleration) for negative leader
relative speeds. Furthermore, it is asymmetric, with dif-
ferent sets of parameters in the two cases. The accelera-
tion is therefore given by:

ant =
aacc

nt if DVnt ø 0

adec
nt otherwise

(
ð3Þ

where aacc
nt and adec

nt are the car-following acceleration and
car-following deceleration, respectively.

IDM

The IDM assumes that drivers maintain a safe following
distance from the leader and at the same time attain a
desired speed V0:

E antð Þ= amax 1� Vnt

V0

� �4

� DX � Vnt,DVntð Þ
DXnt

� �2
" #

ð4Þ

DX �(Vnt,DVnt)=DX0 + T0Vnt +
VntDVnt

2
ffiffiffiffiffiffiffiffiffiffiffiffi
amaxb
p ð5Þ

where amax is a maximum acceleration parameter. DX � is
the desired spacing. DX0 and T0 are the minimum spacing
and time headway, respectively. DVnt =Vnt � Vn�1, t is the
(negative) leader relative speed. b is a comfortable decel-
eration parameter.

In the context of distraction, Hoogendoorn et al. (30)
and Van Lint and Calvert (26) used the IDM to incorpo-
rate mental workload, task demand, and awareness in
car-following behavior.

The acceleration that the vehicle applies included
individual-specific and generic error terms, introduced in
the same way as shown in Equation 2.

Model Estimation

The parameters of both models were estimated using the
maximum likelihood method applied on the acceleration
observations in trajectory data. For the GM model, the
conditional probability density function of the observed
accelerations is given by:

f (antjmn, acc,mn, dec)= facc(antjmn, acc)
d DVntð Þ

fdec(antjmn, dec)
1�d DVntð Þ ð6Þ

where the subscripts acc and dec indicate the acceleration
and deceleration regimes, respectively. d DVntð Þ is an indi-
cator for the sign of the relative speed, which determines
the active regime:

d DVntð Þ= 1 if DVnt ø 0

0 otherwise

�

The conditional probability density functions for the
acceleration and deceleration regimes are given by:

facc antjmn, acc

� �
=

1

se, acc

f
ant � a Vnt

bacc

DXnt
gacc DVnt

lacc � mn, acc

se, acc

 !

ð7Þ

fdec antjmn, dec

� �
=

1

se, dec

f
ant � a Vnt

bdec

DXnt
gdec

DVnt
ldec � mn, dec

se, dec

 !

ð8Þ

For the IDM, the conditional probability density func-
tion of the observed accelerations is given by:

f antjmnð Þ= 1

se

f

ant � amax 1� Vnt

V0

� 	4

� DX � Vnt,DVntð Þ
DXnt

� 	2

 �

� mn

se

0
BB@

1
CCA ð9Þ

With both models, the conditional probability density for
the sequence of T observations of the same driver is given
by:

f an1, :::, anT jmn, acc,mn, dec

� �
=
YT
t = 1

f antjmn, acc,mn, dec

� �
ð10Þ

The unconditional joint probabilities of the observations
for a driver are given by:
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f an1, :::, anTn
ð Þ=

ðð
mn, acc mn, dec

f an1, :::, anTn
jmn, acc,mn, dec

� �

dmn, accdmn, dec ð11Þ

Finally, the likelihood functions are given by:

L=
YN

n= 1

f an1, :::, anTn
ð Þ ð12Þ

The model parameters were estimated by maximization
of these functions. The unconstrained optimization was
done using the maxLik package in R and using the
BFGS quasi-Newton optimization method it imple-
ments; see Henningsen and Toomet (31) for details.

Estimation Results

GM Model

As noted above, separate models were estimated for each
of the distraction conditions (control, texting, eating,
talking on the phone) that were used in the simulator
experiment. The results for the GM models are presented
in Table 2. The hypothesis of equality of the parameters
among the four conditions was tested using likelihood
ratio tests. The results are shown in Table 3. The hypoth-
esis that the parameters are similar for all four conditions
is rejected with a p-value less than 0.001. The hypothesis
of equality of parameters is rejected also for all pairs of
conditions, except the control and eating conditions for
which the p-value is 0.062. To illustrate these results and
the differences among the conditions, Figures 2 and 3
show the effect on the mean accelerations and decelera-
tions of the changes in the explanatory variables: leader

relative speed, spacing and subject’s speed, respectively.
In each figure, one of the variables varies while the others
are held at their base value. These base values are: rela-
tive speed = 5 (or 25) m/s, subject speed =15m/s, and
spacing = 25m.

As expected, the constant sensitivity terms (a) are pos-
itive for car-following acceleration and negative for car-
following deceleration. They are significantly smaller
with texting and somewhat smaller for cell phone use
compared with the control. Somewhat surprisingly, they
are larger with eating.

The parameter associated with the stimulus (relative
leader speed) is positive for both acceleration and decel-
eration. Its magnitude is much larger when it is negative
(i.e., the subject is faster) compared with when it is
positive (i.e., the leader is faster). This is expected since a
negative relative speed stimulus may have safety implica-
tions, whereas a positive relative leader speed stimulus
only suggests a possible speed advantage to the driver.
The GM model assumes that drivers respond to the
leader relative speed. This response, as demonstrated in
Figures 2 and 3, is much lower in absolute value for text-
ing, compared with the control and two other conditions
in both acceleration and deceleration conditions. This
may be a result of the visual distraction associated with
texting (7).

The estimated coefficients of the spacing are positive
for car-following deceleration and negative for car-
following acceleration. For deceleration, this is expected
since the underlying safety concern increases when the
spacing is smaller, and so drivers would tend to apply
stronger decelerations when the spacing is smaller. In the
case of acceleration, as the spacing increases, drivers are
able to apply strong accelerations. Similar to relative

Table 2. Estimation Results of Gipps’ Model (GM)

Parameter

Estimated value (standard errors)

Control Texting Eating Calling

Car-following acceleration
Constant (a) 0.170 (0.042)*** 0.046 (0.020)* 0.184 (0.055)*** 0.129 (0.034)***

Speed (b) (m/s) 20.282 (0.112)* 20.646 (0.212)** 20.080 (0.140) 20.269 (0.112)*

Spacing (g) (m) 20.290 (0.084)*** 20.777 (0.164)*** 20.085 (0.118) 20.405 (0.101)***

Relative speed (l) (m/s) 0.496 (0.056)*** 0.298 (0.089)*** 0.562 (0.076)*** 0.373 (0.060)***

sm 0.266 (0.020)*** 0.238 (0.020)*** 0.257 (0.029)*** 0.289 (0.023)***

se 0.605 (0.013)*** 0.656 (0.015)*** 0.631 (0.015)*** 20.708 (0.013)***

Car-following deceleration
Constant (a) 21.438 (0.549)** 20.052 (0.032) 23.122 (1.200)** 20.306 (0.079)***

Spacing (g) (m) 0.926 (0.122)*** 0.201 (0.088)* 1.121 (0.124)*** 0.439 (0.060)***

Relative speed (l) (m/s) 1.366 (0.131)*** 1.392 (0.261)*** 1.141 (0.149)*** 1.135 (0.119)***

sm 0.156 (0.021)*** 0.345 (0.031)*** 0.202 (0.029)*** 0.276 (0.031)***

se 0.777 (0.015)*** 0.810 (0.018)*** 0.743 (0.017)*** 0.849 (0.015)***

Log-likelihood 25385.02 24575.09 24561.64 26205.39

Note: * p\0.05, ** p\0.01, *** p\0.001.
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Table 3. Tests for Equality among Distraction Conditions of Parameters in Gipps’ Model (GM)

Compared models Unrestricted model log-likelihood Restricted model log-likelihood Degrees of freedom p-Value

All conditions 220727.14 220891.52 33 \0.001
Control—Texting 29960.11 10039.19 11 \0.001
Control—Eating 29946.66 29956.13 11 0.062
Control—Calling 11590.41 11649.78 11 \0.001
Texting—Eating 9136.73 9197.01 11 \0.001
Texting—Calling 10780.48 10837.17 11 \0.001
Eating—Calling 10767.03 10818.05 11 \0.001

Figure 2. Effects of different variables on mean car-following deceleration in Gipps’ model (GM).

Figure 3. Effects of different variables on mean car-following acceleration in Gipps’ model (GM).
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speeds, the effect of this parameter is lower in the texting
condition compared with the control, both in accelera-
tion and deceleration. In deceleration, it is also lower in
the calling condition. Thus, in these two conditions, driv-
ers are less responsive to the spacing.

The estimated coefficient of the subject’s speed in the
acceleration model is negative. Drivers accelerate at a
lower rate when their speed is higher. As with the other
variables, the sensitivity of the acceleration to the sub-
ject’s speed is lower in the texting condition compared
with the control and two other conditions. The speed
parameter was not significant for deceleration, and there-
fore was dropped from the specification. This result is
consistent with that of Gazis et al. (12) and Ahmed (32).

IDM

Estimation results of the IDM are presented in a Table
4. In all models, the comfortable deceleration estimate
was unrealistically large. This caused the third term in
the desired spacing expression to tend to zero. In this
case study, this result is reasonable. The term that was
removed is relevant in cases when the subject approaches
a slower leader. This was not the case in the current
experiment design. The term was therefore removed and
the models re-estimated without it. For completeness,
this paper reports also the results for the full control
model with this term. The differences in the estimates of
the remaining parameters are small.

The overall effects of the various distracting activities
are similar to those found with the GM model. The max-
imum acceleration parameter is lower for the calling and
texting conditions compared with the control and eating,
indicating a lower level of response to the surroundings.
Desired speeds are also lower, which is consistent with
the expected impact of the lower attention dedicated to
the driving task. With both calling and texting, the mini-
mum spacing and desired headway parameters are very
close to zero and statistically insignificant. Thus, the

model shows that drivers in these conditions in practice
do not respond to the spacing to the leader or to the
speed difference. These effects are evident in Figure 4,
which shows the effect of spacing and subject’s speed on
the mean acceleration. In both texting and calling condi-
tions, the mean acceleration is not affected by the space
headway. The effect of speed on the acceleration is also
much lower in these two conditions compared with the
control and eating conditions.

Overall, the estimation results of the two models show
differences in the car-following behavior among the vari-
ous conditions. Specifically, driving while texting is sig-
nificantly different from the other three conditions. In
this condition, and to a lesser extent in the talking condi-
tion, accelerations are much less sensitive to the relevant
variables of subject’s speed, relative speed, and spacing
compared with the other conditions. This result is in line
with previous studies that showed lower ability to per-
ceive and react to the environment in driving, especially
with visual distraction (e.g., 6, 7, 33–35).

Micro-Simulation Implementation

The microscopic traffic simulation model
TRANSMODELER was used to evaluate the effect of
distracted car following on traffic flow. The GM model
is the default car following in TRANSMODELER. The
parameter estimates presented above, after additional
calibration that will be described below, were used in the
simulations. The modified simulation model was applied
to a case study of a 6 km arterial corridor in Nesher,
Israel, for which TRANSMODELER has been previ-
ously calibrated. The corridor includes 17 signalized
intersections. The simulation was run for the morning
peak period from 7:45 to 9:30 a.m. The trip demand for
this corridor was estimated from turning movement
counts that were available for all intersections. A total of
12,909 vehicles per hour use this corridor during the
morning peak hour. In the simulations, the first 15min

Table 4. Estimation Results of the Intelligent Driver Model (IDM)

Parameter

Estimated value (standard errors)

Control (full) Control Texting Eating Calling

Maximum acceleration (amax) (m/s2) 0.443 (0.032)*** 0.447 (0.034)*** 0.104 (0.022)*** 0.336 (0.046)*** 0.238 (0.024)***

Desired speed (V0) (m/s) 25.848 (1.105)*** 24.167 (0.629)*** 18.457 (1.394)*** 23.986 (1.154)*** 22.333 (1.094)***

Minimum space headway (DX0) (m) 10.680 (0.316)*** 9.262 (0.642)*** 0.007 (0.291) 4.970 (0.913)*** 0.008 (2.127)
Desired time headway (T0) (s) 0.539 (0.032)*** 0.739 (0.063)*** 0.002 (0.021) 1.331 (0.133)*** 0.105 (0.202)
Comfortable deceleration (b) (m/s2) 17.778 (1.206)*** NA NA NA NA
sm 0.347 (0.021)*** 0.384 (0.021)*** 0.305 (0.022)*** 0.379 (0.027)*** 0.339 (0.035)***

se 0.685 (0.007)*** 0.698 (0.007)*** 0.750 (0.008)*** 0.690 (0.007)*** 0.807 (0.008)***

Log-likelihood 25487.98 25583.33 24747.26 24657.18 26489.63

Note: *p\0.05, **p\0.01, ***p\0.001. NA = not available.
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and the last 30min were used as warm-up and cool-down
periods, with 50% of the peak hour demand. The statis-
tics reported in the results are for the vehicles departing
in the peak hour from 8:00 to 9:00 a.m.

The car-following models were estimated with data
that was collected from a driving simulator. The litera-
ture shows that driving simulators are useful to study
driving behavior but that drivers’ sensitivity to stimuli
from the environment may be lower than in the real
world. Therefore, multiplication factors were added to
the sensitivity parameters of each model:

E antð Þ= ua
Vnt

b

DXnt
g DVnt

l ð13Þ

where u are sensitivity multiplication factors, which differ
between acceleration and deceleration.

The values of these two factors were calibrated such
that the weighted difference between the average link
speeds and flows obtained in the simulation with the pre-
viously calibrated TRANSMODELER parameters and
the parameters that were estimated for the control condi-
tion are minimized:

min
u

X
i

X
t

V ctl
it uð Þ � V

def
it uð Þ

� 	2

s2
V , it

+
qctl

it uð Þ � q
def
it uð Þ

� 	2

s2
q, it

2
64

3
75

ð14Þ

where V
def
it and q

def
it are the average speeds and flow,

respectively, on link i in time period t (15 min intervals)
in the simulation with the default parameters. V ctl

it uð Þ and

qctl
it uð Þ are the corresponding values in the simulation
with the control cases parameters and the sensitivity mul-
tiplication factors u, sV , it, and sq, it are the standard
deviations of speeds and flow, respectively.

The objective above was minimized with u=
14:38, 11:74½ � for acceleration and deceleration, respec-
tively. These sensitivity multiplier values were then used
in the simulations with the car-following models for all
distraction conditions. As expected, they exhibit higher
sensitivity in the real world, but their magnitudes are
higher than expected. Several explanations may contrib-
ute to this result. Previous studies comparing inferences
of driving behaviors from simulators and from field data
(e.g., 36, 37) showed that they differ not only in the scale
of the response but also in sensitivity to speeds and head-
ways, which is higher in field observations. In this work,
only the scale parameter is adjusted. Thus, it also cap-
tures the mean sensitivity differences to these variables.
Furthermore, the adjustment is made against a model
using the default parameter values, which were calibrated
under different road geometry and flow conditions. Both
Vasconcelos et al. (38) and Papadimitriou and
Choudhury (37) found differences in car-following para-
meters for different field sites and recommended site-
specific calibration. Similarly, there are also differences in
these characteristics between the simulator scenarios and
traffic simulation scenario. Finally, it should be noted
that it is generally accepted that driving simulators pro-
vide relative but not absolute validity of the responses;
see Mullen et al. (39) for detailed review and discussion.

In the traffic simulation experiments, first, all drivers
were assumed to be in one of the distraction conditions:

Figure 4. Effects of different variables on mean car-following acceleration in the intelligent driver model (IDM).
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either 100% are eating, talking, texting, or not engaged
in any secondary activity (control). As will be shown
below, traffic flow and safety measures of performance
were substantially worse for the texting scenario.
Therefore, scenarios with varying percentages of the driv-
ers that are involved in texting (20%, 40%, 60%, 80%)
were run next. The remaining drivers were assumed to
not be involved in any distracting activity. In each case,
five simulation replications were run.

Several measures of performance were calculated from
the simulations to indicate traffic flow and safety in each
case. The measures used are:

1. Average speed, which measures the traffic flow
level of service. Many studies have also shown its
positive association with increases in the likeli-
hood of road crashes and their severity (e.g.,
40, 41).

2. Coefficient of variation (COV) of the speed,
which captures speed variability. This has been
shown to be positively associated with higher
crash rates (e.g., 42, 43). It is calculated as the
weighted average of the COVs for all the links in
the network:

COVV =
X

i

X
t

sV , it

Vit
qitP

i

P
t

qit

ð15Þ

3. Acceleration noise, which is defined as the stan-
dard deviation of the acceleration. It measures the
smoothness of traffic flow (e.g., 44–48).

4. Time fraction in acceleration and deceleration,
which indicates the variability in acceleration.
Higher values of braking time are associated with
increased crash risk. It is calculated as the fraction
of time that the deceleration is larger than 0.25m/
s2. Similarly, the deceleration time fraction is
when the acceleration is larger than 0.25m/s2.
These boundary values represent normal accelera-
tion and deceleration, and so were selected to
eliminate low acceleration or deceleration situa-
tions (48, 49).

Simulation Results

Table 5 shows the measures of performance values for
the scenarios with 100% of drivers undertaking the vari-
ous distracting activities. The texting and talking on the
phone activities reduce the average travel speed com-
pared with the control and cause an increase in the COV
of speed. Both these effects are largest for texting. As
was seen in the estimation results, with these activities,
drivers are less responsive to their environment. For both
the average speed and speed COV, the differences among
the scenarios are all statistically significant with p-
value\ 0.001.
In contrast to these, the acceleration noise is smaller for
the texting scenario. This again stems from the lower
responsiveness of the drivers to their leader while texting.
The acceleration noise is also affected by the level of con-
gestion and the resulting travel speeds: With increased
congestion (and lower speeds), vehicles have fewer
opportunities to accelerate. The congestion levels differ
among the four conditions, and so the results may be
misleading. To account for this effect, Figure 5 presents
the time fractions in acceleration and deceleration for
various ranges of travel speeds. Generally, the fraction
of time in both acceleration and deceleration are close to
zero in low speeds and increase with speed. With all
speed ranges, the acceleration fraction is smallest and the
deceleration fraction is largest with texting. Compared
with the control case, the differences while texting are
statistically significant (p-value\ 0.001) for all speed
ranges over 20 km/h, for both acceleration and decelera-
tion time fractions. There are no significant differences
among the other three conditions. This indicates lower
ability of the driver to smoothly control their speed.
These results are consistent with the findings of Farah
et al. (43).

The results above show that texting has the largest
effect on driving behavior and the emergent traffic flow
characteristics. Therefore, additional experiments were
conducted with varying fractions of drivers that are
engaged in texting. It is assumed that the other drivers are
not distracted (behave according to the control model).
The results are presented in Table 6 and Figure 6. The
average speed and acceleration noise decrease and the
COV of speed increases when the fraction of drivers

Table 5. Performance Measures and Their Standard Errors by Distracting Activities

Average speed
(standard error) (km/h)

Speed coefficient of variation
(standard error)

Acceleration noise
(standard error) (m/s2)

Control 22.2 (0.48) 0.92 (0.04) 0.47 (0.02)
Eating 27.2 (0.72) 0.78 (0.03) 1.04 (0.02)
Calling 13.7 (0.73) 1.13 (0.04) 0.29 (0.02)
Texting 7.6 (0.38) 1.67 (0.01) 0.05 (0.01)
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engaged in texting increases. Compared with the control
(no texting drivers), the differences in average speeds are
significant (p-value\ 0.001) for all fractions of texting
drivers that were used in the experiment. The differences
in COV of speeds are significant for all fractions of texting
drivers (p-value\ 0.001), except for 0.2 (p-value=0.161).
These results are expected given the lack of response by

drivers to their leaders when texting, therefore, there is
greater congestion at intersections and the drivers take
longer to complete the simulation.

The time fractions in acceleration and deceleration as
a function of the fraction of drivers that are engaged
in texting are shown in Figure 7. The acceleration time
fraction decreases and the deceleration time fraction

Figure 5. Time fractions in (a) acceleration and (b) deceleration by speed ranges and distraction activity.

Table 6. Performance Measures and Their Standard Errors by Fractions of Texting Drivers

Fraction of drivers
texting

Average speed (standard
error) (km/h)

Speed coefficient of
variation (standard error)

Acceleration noise
(standard error) (m/s2)

0 22.2 (0.48) 0.92 (0.04) 2.2 (0.04)
0.2 19.9 (1.23) 0.99 (0.03) 2.3 (0.17)
0.4 13.5 (0.84) 1.19 (0.1) 1.9 (0.14)
0.6 11.1 (0.29) 1.42 (0.135) 1.47 (0.17)
0.8 11.0 (0.55) 1.6 (0.03) 1.2 (0.04)
1.0 7.6 (0.37) 1.67 (0.01) 0.9 (0.19)

Figure 6. The (a) average of speed and (b) cofficient of speed (COV) by fractions of drivers texting.
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increases with an increase in the fraction of texting driv-
ers. The effects are more pronounced at higher speeds.
Compared with the control case (no texting drivers), the
differences between the time fractions are statistically sig-
nificant ( p-value\ 0.001) for all speed ranges 20–40 km/
h or above in acceleration and for all speed ranges 40–
60 km/h or above in deceleration. These results again
indicate lower response of drivers to their leaders.

Conclusion

In this study, the GM and IDM car-following models
were re-calibrated using data from a simple car-following
scenario within a driving simulator to study drivers’ per-
formance while engaging in distracting activities: texting,
talking on the phone, or eating, and a control scenario
with no distracting activity. Data on the longitudinal and
lateral movements of the vehicles were recorded in the
experiment.

Estimation results of car-following models for the dif-
ferent distractions show differences in car-following beha-
vior among the various conditions. Specifically, driving
while texting is significantly different from the other three
conditions. In this condition, both accelerations and decel-
erations are much less sensitive to the relevant variables of
subject’s speed, relative speed, and spacing compared with
the other conditions. These results are consistent across the
two models. This indicates lower ability to perceive and
react to the driving environment, which is in line with pre-
vious studies (e.g., 6, 7, 33–35, 50).

The microscopic traffic simulation model
TRANSMODELER was used to evaluate the effect of
distracted car-following on traffic flow. The average
speed, COV of speed, acceleration noise, and accelera-
tion and deceleration time fractions were used as mea-
sures of performance indicating traffic flow and safety.

The simulation results show deterioration of traffic flow
with texting and, to some extent, talking on the phone:
average speeds are lower and the COVs of speeds are
higher. Further experimentation with varying fractions
of texting drivers showed similar trends.

The current study has several limitations, namely, the
study was conducted in a virtual simulator environment,
where drivers may behave differently compared with
real-life driving (28). Distractions were defined with spe-
cific setups. For example, both talking and texting used
hand-held devices. Different setups may affect the results.
Future study should also aim to analyze naturalistic data
to further confirm the results of this study. The model
specifications used in the study account for driver hetero-
geneity, but do not explicitly include reaction times,
which may also capture differences among distraction
conditions.
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